Running AI Agents in Production: Hard-Won Lessons
What I learned deploying AI agents at scale and the mistakes that cost me thousands
Max Techera
@maxtechera
After burning through $10k in API costs in a single weekend, I learned that running AI agents in production is nothing like local development.
Here's what I wish I knew before deploying my first agent swarm.
The $10k Weekend
It started innocently:
# What could go wrong?
while True:
task = get_next_task()
result = await agent.complete(task)
if result.needs_clarification:
clarification = await agent.clarify(result)
# Recursive clarification... what could go wrong? π€¦Spoiler: Everything could go wrong.
Lesson 1: Always Set Limits
Token Limits
const MAX_TOKENS_PER_REQUEST = 4000;
const MAX_REQUESTS_PER_MINUTE = 20;
const MAX_COST_PER_HOUR = 50; // USD
async function callAgent(prompt: string) {
if (await checkLimits()) {
return await agent.complete(prompt, {
maxTokens: MAX_TOKENS_PER_REQUEST
});
}
throw new Error("Rate limit exceeded");
}Recursion Depth
MAX_CLARIFICATION_DEPTH = 3
async def get_clarification(result, depth=0):
if depth >= MAX_CLARIFICATION_DEPTH:
return result # Give up gracefully
clarification = await agent.clarify(result)
if still_unclear(clarification):
return await get_clarification(clarification, depth + 1)
return clarificationLesson 2: Context Window Management
The biggest production killer? Context overflow.
The Problem
- User starts conversation
- Context grows with each message
- Eventually hits token limit
- Agent becomes amnesiatic
The Solution
class ContextManager {
private maxTokens = 8000;
private buffer = 1000; // Safety margin
async pruneContext(messages: Message[]) {
const totalTokens = this.countTokens(messages);
if (totalTokens > this.maxTokens - this.buffer) {
// Smart pruning strategies
return this.intelligentPrune(messages);
}
return messages;
}
private intelligentPrune(messages: Message[]) {
// 1. Summarize old conversations
// 2. Keep recent messages intact
// 3. Preserve critical context
return this.hybridStrategy(messages);
}
}Lesson 3: Error Handling That Actually Works
In production, errors aren't exceptionsβthey're the norm.
Common Failure Modes
- API Rate Limits: 429 errors everywhere
- Timeout Issues: Long-running completions
- Malformed Responses: AI hallucinates JSON
- Service Outages: When the API is down
Robust Error Handling
class ResilientAgent {
async complete(prompt: string, retries = 3) {
for (let i = 0; i < retries; i++) {
try {
return await this.tryComplete(prompt);
} catch (error) {
if (error.code === 429) {
// Rate limit - exponential backoff
await this.sleep(Math.pow(2, i) * 1000);
} else if (error.code === 'TIMEOUT') {
// Timeout - try with smaller context
prompt = this.reducePrompt(prompt);
} else if (error.code === 'MALFORMED') {
// Bad response - try different model
return await this.fallbackModel(prompt);
}
}
}
// All retries failed
return this.gracefulDegradation(prompt);
}
}Lesson 4: Monitoring and Observability
You can't fix what you can't see.
Key Metrics
interface AgentMetrics {
// Performance
responseTime: number;
tokensUsed: number;
costPerRequest: number;
// Reliability
successRate: number;
errorRate: number;
timeoutRate: number;
// Business
taskCompletionRate: number;
userSatisfaction: number;
}Real-time Dashboards
Build dashboards that show:
- Current API spend rate
- Error rates by type
- Response time percentiles
- Context window usage
Lesson 5: Cost Optimization
Running agents efficiently requires constant optimization.
Strategies That Work
1. Model Selection
function selectModel(task: Task) {
if (task.complexity === 'simple') {
return 'gpt-3.5-turbo'; // 10x cheaper
} else if (task.requiresReasoning) {
return 'gpt-4'; // When you need it
} else if (task.requiresSpeed) {
return 'claude-instant'; // Fast and capable
}
}2. Caching
class SmartCache {
async get(prompt: string) {
// Check exact match
const exact = await this.exactMatch(prompt);
if (exact) return exact;
// Check semantic similarity
const similar = await this.semanticSearch(prompt);
if (similar && similar.score > 0.95) {
return similar.response;
}
return null;
}
}3. Batch Processing
async function batchProcess(tasks: Task[]) {
// Group similar tasks
const batches = this.groupBySimilarity(tasks);
// Process each batch with shared context
return Promise.all(
batches.map(batch => this.processBatch(batch))
);
}The Architecture That Scales
After many iterations, here's what works:
βββββββββββββββ ββββββββββββββββ ββββββββββββββ
β Client ββββββΆβ Rate Limiter ββββββΆβ Queue β
βββββββββββββββ ββββββββββββββββ ββββββββββββββ
β
βΌ
βββββββββββββββ
β Router β
βββββββββββββββ
β β β
βββββββββββββββββΌβββββΌβββββΌββββββββββββββββ
βΌ βΌ βΌ βΌ βΌ
ββββββββββββ ββββββββββββ ββββββββββββ ββββββββββββ
β Agent 1 β β Agent 2 β β Agent 3 β β Fallback β
ββββββββββββ ββββββββββββ ββββββββββββ ββββββββββββ
Key Takeaways
- Production !== Development: What works locally will break at scale
- Limits Everything: Tokens, recursion, time, cost
- Monitor Obsessively: You need to see problems before users do
- Plan for Failure: It's not if, but when
- Optimize Continuously: Small improvements compound
What's Next?
I'm working on open-sourcing our agent orchestration framework. It includes:
- Automatic retry logic
- Cost controls
- Context management
- Performance monitoring
Follow for updates!
Building reliable AI systems, one failure at a time. What production lessons have you learned?
Compartir este artΓculo